Improving Performance and Accuracy of Local PCA
نویسندگان
چکیده
Local Principal Component Analysis (LPCA) is one of the popular techniques for dimensionality reduction and data compression of large data sets encountered in computer graphics. The LPCA algorithm is a variant of kmeans clustering where the repetitive classification of high dimensional data points to their nearest cluster leads to long execution times. The focus of this paper is on improving the efficiency and accuracy of LPCA. We propose a novel SortCluster LPCA algorithm that significantly reduces the cost of the point-cluster classification stage, achieving a speed-up of up to 20. To improve the approximation accuracy, we investigate different initialization schemes for LPCA and find that the k-means++ algorithm [AV07] yields best results, however at a high computation cost. We show that similar ideas that lead to the efficiency of our SortCluster LPCA algorithm can be used to accelerate k-means++. The resulting initialization algorithm is faster than purely random seeding while producing substantially more accurate data approximation.
منابع مشابه
Facial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملUse of Artificial Neural Networks and PCA to Predict Results of Infertility Treatment in the ICSI Method
Background: Intracytoplasmic sperm injection (ICSI) or microinjection is one of the most commonly used assisted reproductive technologies (ART) in the treatment of patients with infertility problems. At each stage of this treatment cycle, many dependent and independent variables may affect the results, according to which, estimating the accuracy of fertility rate for physicians will be difficul...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملFace Detection at the Low Light Environments
Today, with the advancement of technology, the use of tools for extracting information from video are much wider in terms of both visual power and the processing power. High-speed car, perfect detection accuracy, business diversity in the fields of medical, home appliances, smart cars, humanoid robots, military systems and the commercialization makes these systems cost effective. Among the most...
متن کاملDetection of Ship Targets in Polarimetric Sar Data Using 2d-pca Data Fusion
Data fusion has lately received a lot of attention as an effective technique for several target detection and classification applications in different remote sensing areas. In this work, a novel data fusion scheme for improving the detection accuracy of ship targets in polarimetric data is proposed, based on 2D principal components analysis (2D-PCA) technique. By constructing a fused image from...
متن کاملImproving Iranian Intermediate EFL Learners’ Oral Narrative Task Performance in Terms of Accuracy, Fluency and Complexity by Awareness Raising Through Semantic Fields
The effects different awareness-raising techniques might have on language learners’ performance have been studied by many researchers. The present study specifically focused on improving EFL learners’ oral narrative task performance in terms of accuracy, fluency and complexity by awareness raising through semantic fields. The participants in the study included 40 intermediate learners whose ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 30 شماره
صفحات -
تاریخ انتشار 2011